
Chapter 2

BETATRON TUNE SHIFTS

2.1 STATIC TRANSVERSE FORCES

The vertical motion of a beam particle inside a beam obeys the equation of motion

dpy
dt

= Fext(y) + Fbeam(y, ȳ) , (2.1)

where py = γmdy/dt is the vertical momentum of the particle and m its rest mass. We are

studying small amount of vertical motion and γ can therefore taken out of the derivative.

Here, Fext(y) is the force due to the magnets outside the vacuum chamber and gives rise

to betatron oscillations, while Fbeam(y, ȳ) is the force on the particle at y and the beam

vertical center at ȳ coming from the electromagnetic fields of the beam. For example,

with quadrupole focusing,

Fext(y) =
B′y
Bρ

y with B′y =
dBy

dx
, (2.2)

where dBy/dx is the gradient of the quadrupole magnetic flux density and Bρ the rigidity

of the beam. If we consider this focusing to be uniform along the accelerator ring while

keeping y fixed, we obtain

〈Fext(y)〉 −→ −(νV0 ω0)2y , (2.3)

where νV0 is the number of vertical oscillations the particle makes in a turn or what we

usually called the bare vertical betatron tune, while ω0/(2π) is the revolution frequency.
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Notice that the average of the external force is proportional to the impulse in one accel-

erator turn. Now the transverse equation of motion becomes

d2y

ds2
+

(νV0 )2

R2
=
〈Fbeam(y, ȳ)〉

γmv2
(2.4)

where R is the average radius of the ring and m the rest mass of the beam particles.

In above, the rigid-bunch and impulse approximations have been applied to the Fbeam,

and we have replaced d/dt by vd/ds with v the velocity of the beam and s the distance

measured along the longitudinal path in the ring. In this chapter, we are going to study

the steady-state effects of the transverse wake potential on the beam. Therefore, there is

no explicit time dependency in 〈Fbeam〉. As will be shown below, the steady-state effects

of the wake potential contribute to betatron tune shifts, while the time-dependent effects

may excite instabilities.

Since we are interested only in small amount of motion in the vertical direction, we

can Taylor expand the beam force to obtain

d2y

ds2
+

(νV0 )2

R2
y =

1

γmv2

(
∂〈Fbeam〉

∂y

∣∣∣∣
ȳ=0

y +
∂〈Fbeam〉

∂ȳ

∣∣∣∣
y=0

ȳ

)
, (2.5)

The first term on the right side is proportional to the vertical displacement of the witness

particle; it therefore constitute a shift of the vertical betatron tune νV0 to become νVincoh.

When the shift is small, we write (νVincoh)2 = (νV0 )2 + 2νV0 ∆νVincoh with

∆νVincoh = − R2

2ν0yγmv2

∂〈Fbeam〉
∂y

∣∣∣∣
ȳ=0

. (2.6)

Since this shift affects an individual beam particle, it is called the incoherent tune shift.

Thus, the incoherent tune shift can be computed by setting ȳ = 0 or without any dis-

placement of the center of the whole beam.

Now coming back to Eq. (2.5), the transverse equation of motion. We can write

one such equation for each beam particle. We perform an average by adding up these

equations and dividing by the total number of beam particles. The result is

d2ȳ

ds2
+

(νV0 )2

R2
ȳ =

1

γmv2

(
∂〈Fbeam〉

∂y

∣∣∣∣
ȳ=0

ȳ +
∂〈Fbeam〉

∂ȳ

∣∣∣∣
y=0

ȳ

)
, (2.7)

This equation describes now the vertical motion of the center of the beam, or the coherent

motion of the beam, which is just a simple harmonic motion. The vertical betatron tune
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of the center of the beam, or the coherent vertical betatron tune of the beam, is now

νVcoh = νV0 + ∆νVcoh. When the perturbation is small, the coherent tune shift becomes

∆νVcoh = − R2

2νV0 γmv
2

(
∂〈Fbeam〉

∂y

∣∣∣∣
ȳ=0

+
∂〈Fbeam〉

∂ȳ

∣∣∣∣
y=0

)
. (2.8)

Let us assume here that the vacuum chamber is completely smooth and infinitely

conducting. Then the force on a beam particle from the beam comes from only two

sources: (1) electromagnetic interaction of the beam particle with all other beam particles

in the beam, which we call self-force, (2) reflection of electromagnetic fields from the walls

of the vacuum chamber, which we call image forces.

2.2 ELECTRIC IMAGE FORCES

The image forces certainly depends on the geometry of the vacuum chamber. Let

us consider the simple case when the vacuum chamber consists of two infinite horizontal

plates at location y = ±h as illustrated in Fig. 2.1. The beam of say positive charges

is displaced by ȳ1 vertically and the witness particle is at y1. We wish to consider the

electric force on the witness particle coming from reflection by the top and bottom walls

of the vacuum chamber. In order that the horizontal electric field at the top and bottom

walls vanishes, there must be an image of the beam with negative charges at position

y = 2h− ȳ1 or at a distance 2h− ȳ1 − y1 from the witness particle. This image will have

another image of positive charges from the bottom wall at y = −(4h− ȳ1) or 4h− ȳ1 + y

from the witness particle. This secondary image will have a third image from the top

wall, etc.

Similarly, the beam will have an image of negative charges from the bottom wall at

y = −(2h + ȳ1) or 2h + ȳ1 + y1 from the witness particle. This image will form another

image through the top wall with positive charges at y = 4h+ ȳ1 or 4h+ ȳ1 − y1 from the

witness particle, etc. Summing up, the vertical electric field acting on the witness particle

is

Ey =
eλ

2πε0

[
1

2h−ȳ1−y1
− 1

2h+ȳ1+y1
+

1

6h−ȳ1−y1
− 1

6h+ȳ1+y1
+ · · ·

− 1

4h+ȳ1−y1
+

1

4h−ȳ1+y1
− 1

8h−ȳ1−y1
+

1

8h+ȳ1+y1
+ · · ·

]
, (2.9)
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Figure 2.1: Illustration showing the electric forces from the images of a beam, off
centered vertically by ȳ, acting on a witness particle at location y inside the beam
between two infinite horizontal conducting parallel plates separated vertically by
distance 2h.

where λ is the linear particle density per unit length along the ring. Every two adjacent

terms are grouped together giving

Ey =
eλ

2πε0

[
+

2(ȳ1 + y1)

(2h)2 − (ȳ1 + y1)2
+

2(ȳ1 + y1)

(6h)2 − (ȳ1 + y1)2
+ · · ·

+
2(ȳ1 − y1)

(4h)2 − (ȳ1 − y1)2
+

2(ȳ1 − y1)

(8h)2 − (ȳ1 − y1)2
+ · · ·

]
. (2.10)

Since we consider only small vertical motion, only terms linear in ȳ1 + y1 and ȳ1 − y1 are

kept leading to

Ey =
eλ

πε0h2

[
(ȳ1 + y1)

(
1

22
+

1

62
+

1

102
+ · · ·

)
+ (ȳ1 − y1)

(
1

42
+

1

82
+

1

122
+ · · ·

)]
=

eλ

πε0h2

[
(ȳ1 + y1)

π2

32
+ (ȳ1 − y1)

π2

96

]
. (2.11)
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In the literature, there is a standard way to write these image contributions following the

work of Laslett [1, 2]:

Ey =
eλ

πε0

εV1
h2
y1 and

eλ

πε0

ξV1
h2
ȳ1 , (2.12)

where εV1 and ξV1 are called, respectively, the incoherent and coherent electric image co-

efficients. For the situation of two parallel plates, we have εV1 = π2/48 and ξV1 = π2/16.

Attention should be paid that in deriving the coherent image coefficient, y1 has been

replaced by ȳ1 in Eq. (2.9) or (2.10) or (2.11). According to Eqs. (2.6) and (2.8), the

coherent and incoherent vertical tune shifts due to electric images are:

∆νVincoh = − Nr0R

πγβ2νV0

εV1
h2

and ∆νVcoh = − Nr0R

πγβ2νV0

ξV1
h2

, (2.13)

where we have replaced the linear particle density by λ = N/(2πR) with N being the

total number of particles in the beam, and introduced the classical radius of the particle

r0 = e2/(4πε0mc2).

2.3 MAGNETIC IMAGE FORCES

Unlike the electric field that cannot penetrate the metallic vacuum chamber at any

frequency, the effect of the magnetic field is more complex. The magnet field has an ac

component and a dc component. The ac component has its component parallel to the

wall of the vacuum chamber converted into eddy current. In other words, the ac magnetic

field cannot penetrate the wall of the vacuum chamber. There the boundary condition is

B⊥ = 0. To accomplish this, the first image from a boundary wall give image currents

that flow in the opposite direction to that the beam. The total force from these magnetic

images acting on the witness charge current at position y1 is illustrated in Fig. 2.2 and is

expressed as

Fmag
y

e
= −eµ0λv2

2π

[
1

2h−ȳ1−y1

− 1

2h+ȳ1+y1

+
1

6h−ȳ1−y1

− 1

6h+ȳ1+y1

+ · · ·

− 1

4h+ȳ1−y1
+

1

4h−ȳ1+y1
− 1

8h−ȳ1−y1
+

1

8h+ȳ1+y1
+ · · ·

]
. (2.14)

There is the factor v2 outside the square brackets on the right side. One v comes from

the source beam current and the other v comes from the Lorentz force. It is interesting
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Figure 2.2: Illustration showing the magnetic forces from the images of a beam, off
centered vertically by ȳ, acting on a witness current at location y inside the beam
between two infinite horizontal conducting parallel plates separated vertically by
distance 2h. The normal components of the non-penetrating magnetic fields vanish
at the plates. The beam or image currents flowing into or out of the paper are
labeled “in” or “out”.

to see that this factor is equal to −eλβ2/(2πε0). Thus, the force due to the ac magnetic

images are just a factor −β2 different from the force due to the electric images. This leads

to
Fmag
y

e
= − eλβ2

2πε0h2

[
(ȳ1 + y1)

π2

32
+ (ȳ1 − y1)

π2

96

]
. (2.15)

Following Eq. (2.13), we write the tune shifts due to ac magnetic images as

∆νVincoh =
Nr0R

πγνV0

εV1
h2

and ∆νVcoh =
Nr0R

πγνV0

ξV1
h2

. (2.16)

There is always a dc part of the magnetic field that can penetrate the wall of the beam

pipe and lands on the pole faces of the magnet as if the vacuum chamber is not there.
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Figure 2.3: Illustration showing the magnetic forces from the images of a beam, off
centered vertically by ȳ, acting on a witness current at location y inside the beam
between two infinite horizontal conducting parallel plates separated vertically by
distance 2h. The parallel components of the penetrating magnetic fields vanish at
the plates. Here, the beam and all image currents flow into the paper.

The boundary condition on the magnet pole faces is now B⊥ continuous and B‖ = 0. In

order to accommodate this, all the image currents must flow in exactly the same direction

of the source beam, as is illustrated in Fig. 2.3. The force on the witness particle is now

Fmag
y

e
=
eµ0λv2

2π

[
1

2g−ȳ1−y1
− 1

2g+ȳ1+y1
+

1

6g−ȳ1−y1
− 1

6g+ȳ1+y1
+ · · ·

+
1

4g+ȳ1−y1

+
1

4g−ȳ1+y1

+
1

8g−ȳ1−y1

− 1

8g+ȳ1+y1

+ · · ·
]
, (2.17)

where the magnetic pole faces are at y = ±g or the magnets have a vertical gap 2g

between the poles faces. It is important to note the slight difference between Eqs. (2.14)
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and (2.17). Here we obtain

Fmag
y

e
= +

eλβ2

2πε0g2

[
(ȳ1 + y1)

π2

32
− (ȳ1 − y1)

π2

96

]
. (2.18)

as compared to Eq. (2.15). Following Laslett, we write the tune shifts due to ac magnetic

images as

∆νVincoh = −Nr0R

πγνV0

εV2
g2

and ∆νVcoh = −Nr0R

πγνV0

ξV2
g2

, (2.19)

where εV2 and ξV2 are called, respectively, the vertical incoherent and coherent dc magnetic

image coefficients. For the special case of two parallel plates, we have here εV2 = π2/24

and ξV2 = π2/16.

It is important to remind ourselves that by penetrating or non-penetrating magnetic

fields, we refer the the magnetic fields exerted on the witness and coming from the center

of the beam or the coherent motion of the beam and all its images.

There is also a set of horizontal image coefficients: εH1 , εH2 , ξH1 , and ξH2 . Because the

point of observation is source-free, ~∇ · ~E = 0 and ~∇ · ~B = 0, we always have

εH1 = −εV1 and εH2 = −εV2 . (2.20)

On the other hand, there is no definite relationship between the horizontal and vertical

coherent electric image coefficients. In the special case of two parallel plates, it is obvious

that ξH1 = 0 and ξH2 = 0, which is the result of translational invariance.

It is important to point out that electric and magnetic image coefficients are always

defined with reference to the half vertical vacuum chamber h or the square of the half

vertical magnetic pole gap g, independent of whether we are talking about the vertical or

horizontal tune shifts. For the example of a rectangular beam pipe of half height h and

half width w, only h2 will enter into the denominators but never w2, such as in Eqs. (2.13),

(2.16), or (2.19). In the same way, for an elliptical beam pipe of vertical radius b and

horizontal radius a, the image coefficients will be defined with reference to h = b but not

a. It is because of such a dedicated reference that the relations in Eq. (2.20) hold.

2.4 SELF FORCE

The interaction of a beam particle with other beam particles in the beam depends

on the transverse distribution of the beam. Let us first consider a uniformly distributed
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coasting beam of radius a. The witness particle at y = y1 ≤ a sees, in the y direction, an

electric force

F elect
y =

e2λ

2πε0a2
(y1 − ȳ1) , (2.21)

and a magnetic force

Fmag
y = −e

2µ0λv2

2πa2
(y1 − ȳ1) = − e

2λβ2

2πε0a2
(y1 − ȳ1) , (2.22)

or a total force of

Fy =
e2λ

2πε0γ2a2
(y1 − ȳ1) . (2.23)

where ȳ1 is vertical position of the center of the beam. This self force is a space-charge

force. According to Eq. (2.6), this self force lead to a space-charge tune shift of

∆νV,Hspch incoh = − Nr0R

2πγ3β2a2νV,H0

. (2.24)

It is clear from Eq. (2.23) that the coherent space-charge tune shifts in both transverse

directions are zero. This is understandable, because the center of the beam does not see

its own space-charge force. We can also define self-field or space-charge coefficients in the

vertical and horizontal directions, εV,Hspch = 1
2
, such that

∆νV,Hspch incoh = − Nr0R

πγ3β2νV,H0

εV,Hspch

a2
. (2.25)

The space-charge coefficients take care of the transverse shape of the beam and how the

beam particles are distributed.

We can also express the incoherent space charge tune shift in term of the normalized

emittance of the beam

εV,H
N

= γβ
a2

〈βV,H〉
, (2.26)

where 〈βV,H〉 is the average vertical/horizontal betatron function of the ring, which is

roughly equal to R/νV,H0 . Then, we have

∆νV,Hspch incoh = − Nr0

2πγ2βεV,HN B
. (2.27)

In the above, we have also introduced the single-bucket bunching factor B to take care of

the fact the the beam may be longitudinally bunched. The single-bucket bunching factor

is defined as

B =
Iav

Ipk
, (2.28)



2-10 CHAPTER 2. BETATRON TUNE SHIFTS

where Iav and Ipk are, respectively, the current of a bunch averaged over a single rf bucket

and its peak current, or the average current to the peak current assuming that all the

buckets are filled.

We can also consider a transverse bi-Gaussian distribution of the beam,

f(x, y) =
N

2πσ2
e−(x2+y2)/(2σ2) , (2.29)

where σ is the rms transverse spread of the beam. A particle at y = y1 will see an electric

force in the y direction,

F elect
y =

e2

2πε0y1

N

σ2

∫ y1

0

e−r
2/(2σ2)rdr =

e2N

2πε0y1

[
1− e−y2

1/(2σ
2)
]
. (2.30)

For small offset, y1 � σ, we have

F elect
y =

e2N

4πε0σ2
y1 . (2.31)

The magnetic force is the same multiplied by −β2. The incoherent space-charge tune

shift is therefore

∆νV,Hspch incoh = − Nr0R

4πγ3β2σ2νV,H0

. (2.32)

Here, we can define the 95% normalized transverse emittance εV,HN95 of the beam which

encloses 95% of the beam particles. This corresponds to a radius r95 given by

1

2πσ2

∫ r95

0

e−r
2/(2σ2)2πrdr = 95% , (2.33)

which gives r95 ≈
√

6σ. Thus

εV.HN95 = γβ
r2

95

〈βV,H〉
= γβ

6σ2

〈βV,H〉
. (2.34)

The space-charge tune shift becomes

∆νV,Hspch incoh = − 3Nr0

2πγ2βεV,HN95B
. (2.35)

This tune shift is three times as large as the tune shift for a uniform distribution in

Eq. (2.27). This is because the linear particle density at the bunch center is much larger

if the distribution is uniform.
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As is seen in Eq. (2.30), the transverse space-charge force is not linear. For the

bi-Gaussian distribution, for example, the incoherent space-charge tune shift is largest

when the witness particle is at the center of the beam and decreases as transverse offset

increases. For this reason, the incoherent space-charge tune shift is in fact a tune spread,

which may encompass a number of resonances in the νV -νH tune space. Those particles

that fall inside a resonant stop band will be lost. The beam intensity in low-energy

synchrotrons is usually limited by this space-charge tune spread. As a rule of thumb,

the incoherent space-charge tune shift has to be kept under ∼ 0.4. At the same time,

the widths of important stop bands have been minimized by corrections made to the ring

lattice.

2.5 COASTING BEAMS

For a coasting beam the ac magnetic field can only come from betatron oscillation of

the beam and is non-penetrating. The incoherent tune shift, according to Eq. (2.6), arrives

from the betatron oscillation of a beam particle inside a beam that is not oscillating. The

beam particle therefore sees only dc or penetrating magnetic field from the bunch and

all its images. Gathering all the contributions, the incoherent tune shifts for a coasting

beam are

∆νV,Hincoh = − Nr0R

πγβ2νV,H0

[
εV,H1

h2
+ Fβ2 ε

V,H

2

g2
+ (1− β2)

εV,Hspch

a2
V

]
, (2.36)

↑ ↑ ↑
electric image magnetic image self-field, (1−β2) gives

in vacuum chamber in magnet poles balance between for ~E and ~H

where in the self-field term, aV is the vertical radius of the beam and εV,Hspch = 1
2

if the beam

is circular. In the term involving magnetic image in the magnet poles, F is the fraction

of the beam pipe enclosed by magnets.

For coherent motion with only dc magnetic field, which is penetrating, from the

bunch and its images, we must use the magnetic penetrating image coefficients ξV,H2 . The

coherent tune shift with penetrating magnetic field is

∆νV,Hcoh = − Nr0R

πγβ2νV,H0

[
ξV,H1

h2
+ Fβ2ξ

V,H

2

g2

]
. (2.37)

↑ ↑
electric image magnetic image

in vacuum chamber in magnet poles
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For coherent motion with non-penetrating fields, the tune shift is

∆νV,Hcoh = − Nr0R

πγβ2νV,H0

[
ξV,H1

h2
+ Fβ2ε

V,H

2

g2
− β2ξ

V,H

1 −εV,H1

h2

]
. (2.38)

↑ ↑ ↑
electric image magnetic image ac magnetic image

in vacuum chamber in magnet poles in vacuum chamber
To understand this expression, let us, for simplicity, discuss just the vertical force. Recall

that the magnetic force has been expanded into

Fmag
y (y1, ȳ1) =

dFmag
y

dy1

∣∣∣∣
ȳ1=0

y1 +
dFmag

y

dȳ1

∣∣∣∣
y1=0

ȳ1 . (2.39)

The ac field comes from the betatron oscillation of the whole beam and has its source

from the second term on the right side only. We know that, for non-penetrating fields, the

first term gives rise to the incoherent electric image coefficient εV1 multiplied by −β2. We

also know that when we replace y1 by ȳ1, the two terms together gives rise to −β2 times

the coherent electric image coefficient ξV1 , which is always non-penetrating. Therefore, the

ac magnetic image from the betatron oscillation of the beam contributes −β2(ξV1 − εV1 )

which is the last term of Eq. (2.38). As for the first term on the right side of Eq. (2.39),

it describes a witness particle oscillating transversely inside a stationary beam. This

particle and its images contribute dc magnetic fields that penetrate the vacuum chamber

and landing at the magnet poles. Its contribution is therefore εV2 , which is the second last

term of Eq. (2.38). After re-arrangement, the coherent tune shift with penetrating fields

read

∆νV,Hcoh = − Nr0R

πγβ2νV,H0

[
(1−β2)ξV,H1

h2
+ β2 ε

V,H

1

h2
+ Fβ2 ε

V,H

2

g2

]
. (2.40)

2.6 BUNCHED BEAMS

For bunched beam, we would like to compute the maximum tune shifts when the beam

current is at its local maximum. We therefore divide by the bunching factor B suitably

so that the bunch intensity will be properly enhanced. Notice that ac magnetic field now

comes from two sources: transverse betatron oscillation of the bunch and longitudinal or

axial bunching of the bunch. Although both effects are ac, their frequencies are in general

very different. The frequency of transverse betatron oscillation is (n−νV,H0 )ω0/(2π), where

n is the revolution harmonic closest to the tune. These frequencies are therefore only
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fractions of the revolution frequency. On the other hand, the axial bunch frequency

is a hω0/(2π) with h the rf harmonic, which is many times revolution frequency. For

this reason, we consider the ac magnetic fields arriving from axial bunching always non-

penetrating, while the ac magnetic fields arriving from betatron oscillation sometimes

non-penetrating and sometimes penetrating.

In the expressions below, we try also to include the effect of trapped particles that

carry charges of opposite sign. Take a proton beam, for example, electrons can be trapped,

giving a neutralization coefficient χe, which is defined as the ratio of the total number

of trapped electrons to the total number of protons. (For antiproton beam, the particles

trapped are positively charged ions.) The trapped electrons will not travel longitudinally.

Therefore, they only affect the electric force but not the magnetic force. In other words,

for electric contributions, we replace 1 by (1− χe).

The incoherent tune shift for a bunched beam is expressed as

∆νV,Hincoh=− Nr0R

πγβ2νV,H0

[
1−χe
B

εV,H1

h2
+ Fβ2 ε

V,H

2

g2
− β2

(
1

B
− 1

)
εV,H1

h2
+ (1−χe−β2)

εV,Hspch

a2
V

]
.

(2.41)
↑ ↑ ↑ ↑

electric image magnetic image ac magnetic image self-field
in vacuum chamber in magnet poles from axial bunching

The second term represents magnetic fields of a stationary beam and its images and

therefore the usual incoherent magnetic image coefficient εV,H2 , which describes dc magnetic

fields penetrating the vacuum chamber and land at the magnet poles. Here, there is no

division by the bunching factor B, because we are talking about the dc fields coming from

the average beam current.

The third term is for the ac magnetic fields generated from axial bunching and a

division by B is therefore necessary. Since the ac magnetic fields are non-penetrating,

their contribution is the same as that of the incoherent electric field and therefore the

factor −β2εV,H1 . We must remember that there is a dc part which we have considered

already and must not be included here again. For this reason, we need to replace B−1 by

B−1 − 1. After re-arrangement, this incoherent tune shift can be rewritten as

∆νV,Hincoh=− Nr0R

πγβ2νV,H0

[(
1−χe− β2

B
+ β2

)
εV,H1

h2
+ Fβ2 ε

V,H

2

g2
+ (1−χe−β2)

εV,Hspch

a2
V

]
. (2.42)

For coherent motion with penetrating magnetic fields from betatron oscillation, we
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have

∆νV,Hcoh =− Nr0R

πγβ2νV,H0

[
1−χe
B

ξV,H1

h2
+ Fβ2ξ

V,H

2

g2
− β2

(
1

B
− 1

)
ξV,H1

h2

]
. (2.43)

↑ ↑ ↑
electric image magnetic image ac magnetic image

in vacuum chamber in magnet poles from axial bunching

The magnetic fields divide into the dc part and the ac part in exactly the same way as

Eq. (2.41), the expression for incoherent tune shift. Because we are talking about coherent

tune shifts, the coefficients εV,H2 and εV,H1 are replaced, respectively by ξV,H2 and ξV,H1 . After

re-arrangement, the coherent tune shifts with penetrating magnetic fields from betatron

oscillation can be rewritten as

∆νV,Hcoh =− Nr0R

πγβ2νV,H0

[(
1−χe−β2

B
+ β2

)
ξV,H1

h2
+ Fβ2ξ

V,H

2

g2

]
. (2.44)

Finally, we come to ac magnetic fields that are non-penetrating coming from both

axial bunching and betatron oscillation. The coherent tune shifts are

∆νV,Hcoh =− Nr0R

πγβ2νV,H0

[
1−χe
B

ξV,H1

h2
+ Fβ2 ε

V,H

2

g2
− β2ξ

V,H

1 −εV,H1

h2
− β2

(
1

B
− 1

)
ξV,H1

h2

]
.

(2.45)
↑ ↑ ↑ ↑

electric image magnetic image ac magnetic image ac magnetic image
in vacuum chamber in magnet poles from transverse from axial bunching

motion

Here, the axial bunching parts are very exactly the same as in Eq. (2.43) because they

describe exactly the same ac magnetic fields coming from axial bunching. As for the dc

magnetic fields, the contribution in Eq. (2.43) come from both terms of Eq. (2.39) and

contribute the coefficient ξV,H2 . Here the dc magnetic fields come from only the first term

of Eq. (2.39) and contribute εV,H1 instead, for exactly the same reason as in Eq. (2.36).

The part of the second term of Eq. (2.39) that comes from betatron oscillation of the

beam gives rise to the second last term of Eq. (2.45), for exactly the same reason as in

Eq. (2.36). After re-arrangement, this coherent tune shift takes the form

∆νV,Hcoh =− Nr0R

πγβ2νV,H0

[
1−χ2−β2

B

ξV,H1

h2
+ Fβ2 ε

V,H

1

g2
+ β2 ε

V,H

2

g2

]
. (2.46)
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2.7 OTHER VACUUM CHAMBER

GEOMETRIES

The electric and magnetic image coefficients have been computed for other geome-

tries of the vacuum chamber: circular cross section, rectangular cross section, and elliptical

cross section, and even with the beam off-center [2, 3]. The computation for the rectan-

gular and elliptical cross sections involve one or more than one conformal mappings and

the results are given in terms of elliptical functions.

The situation of circular cross section with an on-center beam is rather simple. Con-

sider a line charge of linear density λ1 at location x = 0 and y = ȳ1 inside the cylindric

beam pipe of radius b with infinitely conducting walls. We place an image line charge of

linear density λ2 at location x = 0 and y = ȳ2 as shown in left plot of Fig. 2.4.

The electric potential at point P on a chamber wall at an angle θ is given by

VP = − eλ1

2πε0
ln r1 +

eλ2

2πε0
ln r2 , (2.47)

where {
r2

1 = ȳ2
1 + b2 − 2ȳ1b cos θ ,

r2
2 = ȳ2

2 + b2 − 2ȳ2b cos θ .
(2.48)

Notice that if we assert that

ȳ2 =
b2

ȳ1
and λ2 = −λ1 , (2.49)

we obtain from the first assertion that r2
2 = r2

1(b2/ȳ2
1). Then the second assertion ensures

that the electric potential VP vanishes aside from a constant for any point on the wall of

the cylindrical vacuum chamber.

To compute the image force, place a witness line charge at x = x1 and y = y1,

illustrated in the right plot of Fig. 2.4. Then the electric force exerted on the witness

charge by the image has y component

F elec
y

e
= − eλ1

2πε0

b2

ȳ1
− y1

x2
1 +

(
b2

ȳ1
− y1

)2 −→ −
eλ1

2πε0

ȳ1

b2
, (2.50)
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r2

y
1

y
1

y
2

λ1

λ2
λ2

λ1

y
2

r1

b

P
(x  ,y  )11 

θ

Figure 2.4: Left plot illustrates a line charge density λ1 inside a cylindrical beam
pipe offset vertically by ȳ1. There is an image line charge density λ2 at ȳ2 such that
the electric potential vanishes at every point P at the beam pipe. Right plot shows
the combined electric force acting on a witness line charge at (x1, y1).

where in the last step only terms linear in y1 and ȳ1 are retained. According to Eq. (2.13),

∆νVincoh = − Nr0R

πγβ2νV0

εV1
b2

and ∆νVcoh = − Nr0R

πγβ2νV0

ξV1
b2

, (2.51)

we immediately obtain the incoherent and coherent electric image coefficients for a circular

beam pipe:

εV1 = 0 and ξV1 =
1

2
. (2.52)

Because of the cylindrical symmetry, we also have

εH1 = 0 and ξH1 =
1

2
. (2.53)

It is not surprising to see the incoherent electric image coefficients vanish. This is because

at the point of observation of the witness charge, ~∇ · ~E = 0, leading to εV1 + εH1 = 0.
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µ   ∼ 1r

µ   ∼ 1000r

S

N

H

B

Figure 2.5: B-H hysteresis plot showing the operation of normal temperature mag-
net at Point N where the relative magnetic permeability µr is large. The operation
of superconducting magnet is at Point S where the iron yoke is at saturation and
µr ≈ 1.

Mathematically, it is impossible to compute the magnetic image coefficients for a

closed cylindrical iron yoke that has infinite relative permeability. In fact, no solution

exists for a closed iron yoke of any geometry. This is because of Ampere’s law,∮
~H · d~̀= I . (2.54)

For a beam of current I , the component of magnetic field ~H along the inner surface if

the iron yoke is therefore nonzero. Thus, the magnetic flux density ~B inside the yoke

becomes infinite. Speaking in the reverse order, if the magnetic flux density inside the

yoke is finite, the magnetic field ~H along the inner surface must vanish. From Ampere’s

law, I = 0, or no current is allowed to flow through the yoke.

For a normal temperature magnet, we like to operate in the linear region of the B-H

hysteresis curve, for example Point N in Fig. 2.5, in order to take advantage of the large

relative magnetic permeability, µr ∼ 1000. Then, most of the magnetic flux density across

the pole gap is supplied by µr and only a few percents come from the winding current.

Such operation limits the magnetic flux density to Bmax ∼ 1.8 T. This explains why the

iron yoke is mostly made up of two pieces glued together with some medium. In that

case, ~H will only be large in the medium but relatively small inside the yoke and a much

larger beam current will be allowed.
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The story for superconducting magnets is quite different. Here, the magnetic flux

density is mostly supplied by the high winding current, while the iron yoke is always

saturated. The operation point in the hysteresis curve is now at S of Fig. 2.5 in the large

H region where the local slope is 1. Thus the relative permeability µr becomes close to 1

and is very much less than the linear region of the curve. If the same closed iron yoke is

used, the maximum beam current allowed by Ampere’s law becomes ∼ 1000 times larger.

When the relative permeability is finite, the Laplace equation can still be solved using

the image method, provided there is sufficient symmetry in the geometry. Readers with

interest are referred to, for example, the book by Binns and Lawrenson [4].

In Table 2.1, we tabulate the self-field coefficients for uniformly charged beams and

image coefficients for centroid beams [5].

2.8 INCOHERENCE VERSUS COHERENCE

Usually, people say that a large incoherent space-charge tune spread will encompass

a lot of parametric resonances and lead to instability. The common rule of thumb is that

incoherent self-field tune spread should not exceed ∼ 0.40. However, this self-field tune

spread at injection has never been a well-measured beam parameter. It is difficult to

measure because low-energy rings are usually ramped very rapidly. Thus, the self-field

tune spread diminishes very quickly as the energy of the beam increases. Most low-energy

rings that have large space-charge tune spread are ramped by a resonator. To measure the

self-field tune spread, we must disconnect the magnet winding currents from the resonator

so as to provide a longer interval for which the beam energy does not change. This is not

always possible, because the beam will generally become unstable if it is allowed to stay

at such low energy for a long time. If the condition is available, however, the tune spread

can be measured by a technique called rf knockout. A narrow band rf signal is used to

excite the beam. Those particles with the correct tune resonate with the driving signal

and are lost. Since only a small fraction of the beam resonates, this resonating frequency

of rf signal corresponds to the incoherent tune of the beam. Another way is to perform

a Schottky scan which shows the tunes of individual particles. The coherent tune shifts

can be measured by the same rf knockout method. If the exciting rf signal hits a coherent

tune, the whole beam will be lost.

Machida and Ikegami [6] pointed out at the space-charge workshop at Shelter Island



2.8. INCOHERENCE VERSUS COHERENCE 2-19

Table 2.1: Self coefficients for uniformly charged beam and
image coefficients for centered beam.

Coeff. Circular Elliptical Parallel Comments

Plates

εVspch

1

2

aV
aH + aV Combined electric and

εHspch

1

2

a2
V

aH(aH + aV )
magnetic self-field

εV1 0
h2

12w2

[
(1+k

′2)

(
2K

π

)2

−2

]
π2

48 Electric field and ac

εH1 0
−h2

12w2

[
(1+k

′2)

(
2K

π

)2

−2

]
−π2

48
magnetic field with ξ1

εV2 * *
π2

24 Magnetic field

εH2 * *
−π2

24

ξV1
1

2

h2

4w2

[(
2K

π

)2

− 1

]
π2

16 Electric field and ac

ξH1
1

2

h2

4w2

[
1−

(
2K

π

)2
]

0
magnetic field with ε1

ξV2 * *
π2

16 Magnetic field

ξH2 * * 0

* ε2 and ξ2 for closed magnetic boundary (e.g., circular or elliptic) cannot be calculated
for µ→∞, since the induced magnetic field would not permit a charged beam to pass
through. Closed magnetic yokes are used in superconducting magnets, but there the
coefficients ε2 = ξ2→0, since the magnetic material is driven completely into saturation
(µ→ 1).

K(k) is the complete elliptic integral of the first kind. k is determined from (w−h)/(w+
h) = exp(−πk′/k) where w and h are the horizontal and vertical axes (not radii) of the
elliptical cross section, d =

√
w2 − h2, and K ′ = K(k′) with k′ =

√
1− k2.
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Figure 2.6: (color) Tune of coherent quadrupole mode (left) and rms emittance at
512 turns after injection (center and right) versus beam intensity. Upper figures
show horizontal results and lower ones vertical. Rms emittance growth is observed
when either the horizontal or vertical coherent quadrupole tune becomes integer.
(Reproduced from Ref. [6]).

that it is the coherent rather than the incoherent tune shifts that determine the instability

of a beam. In fact, this is quite reasonable. When the bunch is oscillating at an integer

coherent tune, we have the usual integer resonance. This leads to an instability because

all particles are performing betatron oscillations with a tune component that is at an

integer. The whole beam will become unstable. On the other hand, if the incoherent

tune spread covers an integer resonance, only a small amount of particles are hitting the

integer resonance; thus the whole beam may not be unstable. The coherent betatron

tune is not affected by space charge when the image forces are small. This is because

the centroid of the bunch does not see any space-charge force. On the other hand, the

coherent quadrupole betatron tune and coherent sextupole betatron tune will be affected

by space charge. Therefore, when they hit a resonance, there will be instability. This is

demonstrated by the simulation of Machida and Ikegami in Fig. 2.6. In the simulation,

the horizontal coherent quadrupole tune hits the integer of 13 when the beam intensity
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reaches ∼ 15 A. We do see that the horizontal emittance increases rapidly around the

beam intensity of 15 A. The vertical coherent quadrupole tune hits the integer 11 when

the beam intensity is raised to around 13 to 15 A. The vertical emittance increases also

around those intensities. However, we do not see any growth of emittance when the

coherent quadrupole tunes cross half integers.

2.9 CONNECTION WITH IMPEDANCE

In Eq. (2.5), the term proportional to y on the right side is absorbed into the betatron

tune shift so that νV0 becomes νV . The equation becomes

d2y

ds2
+

(νV )2

R2
y =

1

γmv2

∂〈Fbeam(y, ȳ)〉
∂ȳ

∣∣∣∣
y=0

ȳ . (2.55)

The coherent force on the right is related to the transverse wake function and therefore

the transverse impedance. The connection can be easily made using Eq. (1.24), which

says
∂〈Fbeam(y, ȳ)〉

∂ȳ

∣∣∣∣
y=0

ȳ =
ieZ⊥1 βIȳ

C
=
ie2Z⊥1 β

2cȳ

C
. (2.56)

On the other hand, in Eq. (2.12), according to the the definition of the image coefficient,

eEV (y, ȳ)|y=0 =
e2λZ0c

π

ξV1 −εV1
h2

ȳ . (2.57)

As a result, we obtain

Z⊥1 = −i Z0C

πγ2β2

ξV1 − εV1
h2

. (2.58)

For a circular beam pipe, ξV1 = 1
2

and εV1 = 0. This is just exactly the second half of

the transverse space-charge impedance in Eq. (1.32). Thus, the transverse space-charge

impedance can be interpreted as the summation of two parts: the part proportional

to a−2 is the self-field contribution and the part proportional to b−2 is the wall image

contribution. We can therefore rewrite the expression in a more general way as

ZV,H

1 = i
Z0C

πγ2β2

[
εV,Hspch

a2
V

− ξV,H1 −εV,H1

h2

]
, (2.59)

where h is the half height of the vacuum chamber.
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It is important to distinguish the difference between the force generating the coherent

tune shift and the force generating the transverse impedance. The former involves the ξ1

coefficient while the later involves ξ1−ε1. The coherent tune shift is the result of all forces

acting on the center of the beam ȳ, while the transverse impedance comes from the force

generated by the center motion of the beam on an individual particle. In other words,

∆ν ∝ ∂〈Fbeam(y, ȳ)〉
∂y

∣∣∣∣
ȳ=0

+
∂〈Fbeam(y, ȳ)〉

∂ȳ

∣∣∣∣
y=0

,

Z⊥1 ∝
∂〈Fbeam(y, ȳ)〉

∂ȳ

∣∣∣∣
y=0

. (2.60)

Thus, the results can be very different. Take the example of a beam between two infinite

conducting planes. Because of horizontal translational invariance, the horizontal force

acting at the center of the beam vanishes independent of whether the beam is moving

horizontally or vertically. The horizontal coherent tune shift therefore vanishes. However,

the horizontal motion of the center of mass of the beam does provide a horizontal force on

an individual particle, which may not be moving with the center of mass. That individual

particle will therefore see a nonvanishing transverse impedance.

2.10 MORE ABOUT WAKE FUNCTIONS

Most the time the vacuum chamber is not cylindrical in shape. Thus, the expansion

into circular harmonics in Sec. 1.4 cannot be performed. Here, we want to emphasize that

it is always completely valid to expand ~E and ~B into circular harmonics. However, when

the boundary conditions are applied, ~E and ~B of different circular harmonics will be mixed

together, and so are the wake functions Wm for different m’s. In other words, equations

corresponding to an individual m are not independent, thus rendering the expansion

useless. For this reason, we need to give slightly different definitions for the wake functions

when there is no cylindrical symmetry.

Consider a test particle carrying charge q1 traveling with velocity v longitudinally

along a designated path in a vacuum chamber. A witness particle of charge q2 at a

distance z behind along the same path sees a longitudinal force F
‖
0 and a transverse force

F⊥0 due to the wake fields of the test particle. In general, these forces depend also on the

location s of the test particle along the beam pipe. However, when we apply the impulse

approximation, these forces are integrated over s for a long length ` of the beam pipe
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Figure 2.7: Test particle with charge q1 at an offset of a1 from the designated
path leaves wake fields to the witness particle with charge q2 at an offset of a2 at a
distance z behind.

and become functions of z only. For a circular machine, ` is taken as the circumference

C. Unlike the situation of traveling along the symmetry axis of a cylindrical beam pipe,

here there is always an average transverse force 〈F⊥0 〉. This transverse force comes mostly

from the images in the walls of the vacuum chamber. It should be weak in general and

can therefore be incorporated into the betatron tunes as tune shifts in the way discussed

above in Sec. 2.1.

The longitudinal wake function is defined as

W ′
0(z) = −〈F

‖
0 〉`

q1q2
, (2.61)

where 〈F ‖0 〉` denotes the longitudinal integrated wake force or impulse.

If the path of the source particle is displaced transversely by a1 from the designated

path as in Fig. 2.7, the witness particle displaced by a2 at a distance z behind will see

a longitudinal force F
‖
1 and a transverse force F⊥1 . The transverse wake function is now

defined by

W1(z) = − lim
a1,a2→0

(〈F⊥1 〉 − 〈F⊥0 〉)`
a1q1q2

, (2.62)

where the transverse force along the designated path 〈F⊥0 〉 has been subtracted away

because it has been taken care of already as tune shifts. Defined in this way, W ′
0(z) and

W1(z) will be the same as the m = 0 longitudinal wake function and the m = 1 transverse

wake function defined in Chapter 1.
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2.11 EXERCISES

2.1. Consider a beam with bi-parabolic or semi-circular distribution

ρ(r) =
2eλ

πr̂2

(
1− r2

r̂2

)
, (2.63)

where r̂ is the radial extent of the beam and λ is the linear particle density.

(1) Compute the self-field or space-charge incoherent tune shift at the center of

the beam where it is maximal and show that the space-charge coefficient defined in

Eq. (2.25) is εspch = 1.

(2) Explain how one can understand that εspch for this distribution is in between

εspch = 1
2

for uniform distribution and εspch ≈ 3
2

for bi-Gaussian distribution.

2.2. Consider a beam with elliptic cross section and uniform particle distribution.

(1) Show that the electric potential

V (x, y) = − eλ

2πε0

1

aH + aV

(
x2

aH
+
y2

aV

)
(2.64)

for x2/a2
H + y2/a2

V < 1 and 0 otherwise, satisfies the Laplace equation

∇2V (x, y) = − eλ

πε0aHaV
, (2.65)

where λ is the linear particle density of the beam.

(2) Show that inside the beam, the transverse electric fields are

Ex =
eλ

πε0

x

aH(aH + aV )

Ex =
eλ

πε0

y

aV (aH + aV )
(2.66)

(3) Comparing with the electric field components inside a cylindrically symmetric

beam of radius a, show that the space-charge tune shift coefficients, defined in

Eq. (2.25), inside this beam of elliptic cross section are

εHspch =
a2
V

aH(aH + aV )
and εVspch =

aV
aH + aV

. (2.67)
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2.3. We are going to derive the electric potential V (x, y, z) for a 3-dimensional charge

distribution,

ρ(x, y, z) =
eN

(2π)3/2σxσyσz
exp

[
− x2

2σ2
x

− y2

2σ2
y

− z2

2σ2
z

]
, (2.68)

following the method of Takayama [7], where N is the total number of particles.

(1) Show that the Green function of the Laplace equation can be written as

G(~r, ~ξ) =
1

4π|~r − ~ξ|
=

1

2π3/2

∫ ∞
0

dq e−|~r − ~ξ|
2q2

. (2.69)

In other words, G(~r, ~ξ) satisfies

∇2G(~r, ~ξ) = −δ(~r − ~ξ) . (2.70)

(2) Changing the variable of integration to t = q−2, show that the electric potential

can be written as

V (x, y, z) =
1

4π3/2ε0

∫ ∞
0

dt

t3/2

∫ ∞
−∞

d~ξ ρ(~ξ)e−|~r − ~ξ|
2/t . (2.71)

(3) With ρ given by Eq. (2.68), derive the electric potential

V (x, y, z) =
eN

4π3/2ε0

∫ ∞
0

dt
exp

[
− x2

(2σ2
x+t)
− y2

(2σ2
y+t)
− z2

(2σ2
z+t)

]
√

(2σ2
x + t)(2σ2

y + t)(2σ2
z + t)

. (2.72)

2.4. Consider a beam with bi-Gaussian transverse charge distribution,

ρ(x, y) =
eλ

2πσxσy
exp

(
− x2

2σ2
x

− y2

2σ2
y

)
, (2.73)

where σx and σy are the rms width and height, and λ is the linear particle density.

(1) From Eq. (2.72), show that the electric potential is

V (x, y) =
eλ

4πε0

∫ ∞
0

dt
exp

[
− x2

(2σ2
x+t)
− y2

(2σ2
y+t)

]
√

(2σ2
x + t)(2σ2

y + t)
. (2.74)

(2) Show that the transverse electric fields are

Ex =
eλx

4πε0

∫ ∞
0

dt
exp

[
− x2

(2σ2
x+t)
− y2

(2σ2
y+t)

]
(2σ2

x + t)
√

(2σ2
x + t)(2σ2

y + t)
,
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Ey → Ex with x→ y, y → x . (2.75)

(3) The self-field or space-charge tune shifts are at their maxima at the center of

the beam, or x→ 0 and y → 0. Show that they are given by Eq (2.32) with

σ2 → σx(σx + σy)

2
for ∆νHspch incoh

σ2 → σy(σx + σy)

2
for ∆νVspch incoh .

(2.76)
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